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ABSTRACT

/97/é

It has long been kno'n that an important mode of energy loss
for cosmic ray electrons is ii.verse Compton scattering with photons
of starlight. Frevious calculations of (dE/dt)A? due to this process
have involved non-systematic approximations invciving the form of the
flein-Nishind formula and the angular distribution of the radiation
as seen in the electron's rest frame. The present naper considers
an electron of arbitirary energy in an isotropic therrnl radiation
~ field of temperature T. A formally correct expression for (d)'-‘,/d.t)Av
is obtained as an asymptotic expansion in the quantity ng/(meca)z
considered as a small parameter The oft quoted result
(de/dt)AV « 2 is seen to be the zeroth order term in this expansion.
It is also seen that the energy loss rate ccanges sign at : energy
e g;f'kT as would be expected from thermodyramics. A derivat--n
of the zeroth order term is given from classical radiation thecry
and from this it is seen t t thi: term also describes the energy

loss rate due to synchrotron radiation as well as from inverse

Compton scattering.
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INTRODUCTION

The scattering of energetic electrons by lr~w energy photons,
called "inverse" Lompton scattering, Las been o1 asirophysical
interest for many years. It was first investigate by Feenberg
and Primakoff! as a process by which cosmic ray electrons (ami  notons)
would lose energy during their passage through the galaxy. Later
Donahue? applied the general method of Feenberg and Primakoff to the
case of electrons trapped in orbits about the sun.

The result of these two papers that the mean .aergy loss of an
energetic electron of energy £ is proportional to both the photon
energy density and t» d‘z was applied by Huyakawa and Kobayash13
and by Hayakawa and O-uda* to the problem of the equilibrium of cos-
mic ray electrons in the galaxy. More recently, Felton and Morrison®
have considered this process as a possible source of galactic x~rayss‘8
and gamma-rays®~'l and Shklovsky'? has proposed it as a source of x-rays
in solar flares.

In the calculations of Feenberg and Primckoff and Donahue
the relevent cross section formula is the Klein-Nishinsa formula
ole', x') for the scattering of a photon of energy ¢' by a
stationary electron through an angle X'. In essence the scattering
probability is expressed in the electron's rest frame and theu trans-

formed to the laboratory frame to determine the mean energy transferred



from the electron to the photon. In the previous calculations

the full Klein-Nishina formula was n. used bui rather the asyrptotic
forms for €' < me::2 (Thompson scattering) and for e' 3. mecz. In
Feenberg and Primakoff the two forms are used in the two regions ¢' « mec2

2

and €' > mec respectively as an approximation to the correct formila.

Donahue, on the other hand, uses the two formula in the regions €' < mec2/4

2 respectively and connects the two regions cf his results

and ¢' > 4 m c
with an "eyeball" curve. Both authors assume that the electron is
energetic enough so that in its rest frame all of the incident radia-
tion has @' ~ O where m - ©' is the angle between the photon momentum
in the electron resiu frame and the original direction of the electron
momentum. This assumption obvicusly limits the validity of the recults
t> high energy elecirons.

The primary problem with these approximations is that they are
non-systematic; they do not suggest how to apply a higher order
correction. In the present calculation the mean rate of energy loss
- {(a€ /dt) of an electron in an isotropic radiation field in thermal
equilibrium is determined. The only approximatioh used for a wide
range of £ is a systematic one in that the result is obtained as a true
asymptotic expansion in powers of a small parameter ¢ = éfkT/(mecz)a
where £ 1is the electron energy and T is the temperature characteristic
of the radiation field. Wbra £ gets so large that ¢ ~ 1 the expansion

is no longer useful and tho resul' must be obtained by methods which




are less systematic put which are, nevertheless, quite accurate. We
will also discover an interesting relationship between inverse
Compton scattering, as described by the zeroth order term of the ex-

pansion, and synchrotron radiation.
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TI FORMULATION OF THE PRCRLEM

Consider an : 'sciron of energy *, (we sball express the electron

2, and kT = @ mc® in

. energy & =y mc™, the photon emergy ¢ = @ mc
terms of the dimersionless parameters *, @, and <) L. ing in a region
of space in which the photon density, a (¢, @), is gisen as a funetion
of energy o and argle © waere T - @ i~ the sngle between the photcn asrd
electron velocity rectors. Letting & prime (') indicate quantities

expressed in the electrons rest frame we may write for the number of

Joapton collisions per unit time

(an/aty, = <dN/vdt';v-_~j aot(a') j aut (c/y) o' (af, @') ot (at) (1)

where o‘{a’) is the Klein-Nishina total cross section. Since

n' (a',8) do' (') do' is a number density it transforms under the
Lorentz transformation like an energy &' so that n' (&', @) 40 (0')da'/a!
is an invariant.

We may then set

o )
. N i
K



5 -
a' (a', Q) a' {¢') &' = {(a'/ a) n {o,®) an (0) aa (2,
and obtain

(dN/d.tZ‘Av =c j an(e) j da (a'/v2) n (a,8) c'(a’) . (3)

If we denote the lab frame energy of the scattered pkoton by o,
transfer
the energy/ in the scattering process is (@; - a) and the mean erergy

loss of the electron is given by

(- av/aey,, = e [ a2(0) [au (a'/¥a) u (g, 0) fao'(x') o' (@',x')oa-e) (k)

e ST
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whers ~ {a',x') is the differen“ial Klein-Nishina formula for
scattering a photon of energy o! thrcugh zn angle X'. We have the

usual angle-energy relationship for Compton scattering

0 f =’/ [ L+a" (1-cosx')] . (5)

Employing the well known Doppler shift formula,

a'y(1L - B cos 6;")
@ =op'y (L - B cos ©;') = (6)
1+a' (1 -cosx')

(8 = AZ - 1N = v/ec)

v (1L - B cos ©;,') o

3 (0

1+a'(l-cos¥x' a



Consulting figure 1 we obtain the following formula from spherical

trigonometry

cos 01' = cos ©' cog X' + sin ©' sin X' cos @ .

Since the cross section formula cannot depend on @ we may chose X'
and § as our coordinate angles for d0' (x', @) and immediately integrate

over . This has the effect of mltiplying equation 4 by 2m and re-

C R l 3 P —
Placing cos ©;' with cos 8y where
cos 0;' = cos 9' cos x' .

The Klein-Nishina cross section formula is

(8)

(9)
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o'2(1 - cos x')2 .

ro® (1 + cos® x') {l N
O"(O-',X') = P 1( 1 P 2 1 ' 1 (lo)
2 [1+ a'{l-cos x')1 (1+ cos®y')[1+e'(L-cosy')]
(rg = ¢®/mc®)
Making the following substitutions
Becos 0' =1 - (afya') 51 -cos x* =¢ ;
aa' (x',8) = 2mif
and inserting equation 10 in equation 4 we obtain
(—d.y/d.t)Av = moZc | 40(8) Eo ds N (q,8) (a'/va)
2 (f2-2r+2) (e'£)2 (y-o/a'-a)gd!
x| df——[l+ ] (11)
o (1+¢'r)2 (£2-2£42) (1+a'f) ~ (L+a'f)

It should be noted that the variables in this expression are not
independent since q, o', y, and 8 are related by the Dopplexr
shift formula

a‘=ya(1+acose)



We now specialize to the case where n(a, 8) vepresents an

isotropic radiation field i.e., n{a,8) = n(a)/bn
aa(e) = 2m(cos 8) = do'/(Bye)

and obtain

(_d_.Y/dt)Av = %‘ mroe j. da n {a)/ (Byza?‘)
(6]

'ya,(l+5) (£3_pr240f) . e
X af Ba'Te"B(y-a)-a'al ' (<. 1e)3 VY
o J'Ycl(l-B) --(L'w ) .‘.)

] (12)

(1+a

The integration over f and ¢' may be done by a straightforward and
repeated application of a good set of integral tables. After some

time we arrive at the result

® N(a)
(-ay/at), =% nroZe jo da o Fla,v)
voa
Fla,y) = v, (ov ) - £ (a/y)] (13)

- a[fa(q.;) - £2la/Y)1

Lo
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- 1
vhere y =+y(1 +8) =y + (y3-1)%

and f,(z) = (z + 6 + 3/2) log (1 + 2z)

~(2223/3 + 2422 + 18z + 4) (1 + 22)72

-2 + 2 Li, (-2z)

fo(z) = (z + 31/6 + 5/2 + 3/22%) log (1 + 2z)

- {2223/3 + 2822 + 1032/3 + 1T + 3/z) (1 + 22) 2

-2+Lj-2 (-22) .

fhe function lis(z) is the Eulerian Dilogarithm?® defined by

Z log(l - z')
Lis(z) = -J ~—————— dz' for complex z
o z!
S on
z
Lip(z) =z = |z| < 1.

n=1

(14)

(15)
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ITI EVALUATION OF THE INTEGRAL

We will now ccrnsider that the photon deusity is described

reasonably well by the Plandk radiation formula

2

(o) ¢
oI ST (g2

o«

where (a) = X e n (o) do = "energy" density and {(p) is the Riemann
)

Zeta function defined by
c(p) =1+ 1/2P +1/3P + ...
and ¢ (&) = n*/90
Expression 13 may now be written

- (dv/dt>Av = moZc (a) N (y)

o]

(15/+*) 1 7 r(z) az

_ £,(z) dz
4 (2 )BT f oY \f =
e*2(y2-1) o exp (2/48) - 1 o exp (zy/®) - 1

(16)

T

B e A
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® 2f.(z) az ® 2fy{z) dz

EY

(15/n*)
042y(y -1) %

W] 1

o exp (z/g8) -1 > exp (zg/8) - 1
where we have transformed varsables in such a way as to make the
argumerts of £, and fp the variable of integration.

Up to this point our calculations have been exact within the
framework of the physical situation that we have considered. We

now ask whether there is some systematic approximation scheme

that will allow us to evaluate the integrals in equation 17 in some

simple manner.

To this end we notice that f; and £, have a second order pole
and & branch point at z = - 1/2 (a remmant of the pole in
ola',x') at cos x' =1 + l/a ). Tris means that the power expan-
sions of fy and fp, fy _ZA Z fo -ZB 7" are convergent

n=l n=l

only for |z| < 1/2 and our integrals are over the range 0 2 z < « .
However, we notice that the term [exp (kz) - 1] ' is a
function thet veaks at 1/k and drops off as exp (-kz) for values
of z significantly greater than 1/k. Therefore if oy < 1/2
only the portion of f; and fy for z < 1/2 will contribute signifi-
cantly to the integral. Since @ = kT/mec2 ~ 10°® for T = 6,000%
we may consider ; ® as a small parameter of order ¢ (since §2 1,
@/y <y ©). The expension coefficients A and B for I and fp

respectively are obtained, in s stralghtforward manver from the

(17)
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known expansiors of log (1 + 2z), (1 + 22) 2, and Lio(-2z). These
coefficients for n up to ten are given in table I.

72 we now insert the series form of f; and f5 into the inte-
grals in equation 17 and ignore the fact that they are not con-
vergent for |z| > 1/2 ve will obtain a formal series for N(y)
which we hope will not be in error by very much. Msking use of
the formila

® xMax

f o G/I ° n! ¢ (n+l) ¢

o

n+1 (18)

we have

® £,(z) dz

= Yan! ¢ (n41) &2
foexp TR Z n )

(19)

- -]
.z £o(z) dz o+

J

E:Bn (n+l) ! ¢ (n+2) ¢
n

o exp(z/e) -1

We may see at once that these: series are not convergent since from

the known circle of convergence of the series for f; and fy

N ARG e
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lim An lim Bn
we have —_— = = 2,
Do An—l n=e Bn-l
lim

Therefore since o ((z) = 1 we have

t n+.l
1in ,An? C(n+1)®

> (a(a-1)! cla)e

') =2n@ -
n

So for any finite ¢ there is a value of n ~ 1/2¢ beyond which
the terms of the series grow without limit. It is fairly easy to
see that this is the same series that would be generated by
repeated partial integrations of the integrals in 19 since

Ann! = dnfl/dzn. Furthermore, it is demoastrated in the ap-
pendix that this is in fact a correct asymptotic expansion of the
integrals in the sense that

C en + RN(e)

¥(e) = n

i, 0~ =

and Ri(e) = 0 (M) .
Noting fiom teble I that

Ao = Ay = Az =Bg =By =0




we may, after some rearrangement of terms, write fur N{y)

Ny) = (15/r) ) [y3A,,5C0.5 )

m=0
(0]
B0, ()] (m3)! ¢ (mh) (8)"
where
n
- g SN
- - 1
Cn(y) =z G) 1-437"72 = 2'\(n 1(Y2-1)2
i=044

We see that for @ € 1 (in our case y € 10%) this series gives
an excellent approximation provided you don't sum beyond n == l/2y®.

The zeroth order term in this series is
(v2 2% ¢ (y) =Bz C2 (y)) 3! ¢ (W) (/%) = (As (y®-1) -2Bz)
= hAs (y=2-1)

since 2By = 3As.

R
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Inserting this approximation to N(y) in expression 16 we have

to zeroth orier
~(af /aty, = 3.555 mro®c p(p/mc)®

where p 1is the photon energy density in conventional units. We
see that for electrons of sufficiently low energy such thst wvc # ¢
the energy loss rate is proportional to p2 rather thané‘z.

We note further that expression 20 is negative for  sufficiently
close to 1. This means that a very low energy electron car, on the
average, gain energy from the radiation field. Setting expression 20

to zero we have to first order
Ask! ¢ (4) (43-1) = - [5A4 - 3Bs + (y®-1) (8As - Bs/y®)]
x 41 ¢ (5) (y@)

Since equation 22 states that y2-1 = 0(¢) we may neglect the term in

yZ-1 on the right hand side and obtain

(3Bs-4Ay)  ¢(5)
ya-l = v@®
As gll)

= 3@ (¢(5)/¢(4))

= 0.958 (3y8)

(21)

(22)

(23)
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We see that this is a few percent below the equipartition energy
for a relativistic gas?® 42-1 = 3y8. A similar calculation for the
energy loss of a test particle in a Maxwellian, hard-sphere gas
gives {(d&/dt\ =o for = 0.981 (3kT/2 ) which is in qualitative
agreerent with 2quation 23.

For y<g 1 therasymptoti: series 20 is no longer useful. In
this region we must resort to less systematic but neverthe:ess
quite accurate methods of approximation. First of all note that if
vy@ 2 1 then v/ 5 1. This means that the second and fourth integrals
in expression 17 may be completely ignored. We may, in fact, rewrite

expression 17, noting that V'zfgy, as

\ £,(z) az s -1rmz fz (z) dz ]
=]

Ny) = (15/1) L(hya)-l Jo exp{z/2y@)-1 ~ (&%) }OeXP(z/2y®)

From expressions 14 and 15 we also see that both £, and f> tend
to z log (az) for z large ~here a = 2e*11/6. In fact for
z2z'=T. x 10* this approximation is good to within oae part in
10%. We may, therefore, perform the integrations indicated in
expression 24 in two parts; from zero to z' we evaluate the inte-
grels numerically and from z' to . we use 2 log (az) for f, and f,
and obtain analytic expressions.

Carcying out this procedure we obtain the following, rather un-
transparent exprescion where T' = 20y

o £, (z) dz .
N(y) = (60/n4){7%:T * (:jog&p(z/r)— 1/ numerical

2

(24)
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-T2 2" log (az') log (1-e"z/.r)
I 2 (log (az') + 1) Lio (e_z/r)

+ T ° z -El(—nz'/r

11

l
]
-

_1/2L1" K Zfa(Z)dZ\
(z7I‘5 -1 numer:l.ba.l

-T2 22 10g (82') log (1 - exp (-2'/T))
+T 22" (21og (@az') + 1) Lip (exp (-z'/T))

+T * (2 log (az') + 3) Lia (exp (-z'/T))

-1 -Ei(-nz'/T) 1
+T 22*——,15-—— JY. (25)

n=l

Lis(z) is the trilogarithm where in general

Z i .(z")
Li (z) = “ ...—I}:_l___. dz'
n go Z'

-]

= V 2" /a" lz] <1

m=1
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and Ei(z) is the exponential integral defined by

-Ei(z) = | e at .

The values of this expressionmgybe calculated quite easily on
a computer; however, it is instructive to consider the situation
vwhen vy (nence TI') tecomes very large. A brief examination shows

that every term in the expression tends towards zero with the

exception of the first series > :5L———4L—l . From the known
properties of Ei(-x) we have
Bi(-x) = C + log (x) + f£(x)

where C = 0.577215665 is Euler's constant and f(o) = o0 and

l£(x)] - |C + log(x)!| as x ~ =.

f{nx)

<«
Therefore
pa]

converges uniformly for all finite x and

converges to zero for x equal to zero. We are then left with

., C+ log o ,
_;; log n

n n2

= ¢ (2) log (?%%} + const.

Bt pren
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We then have

N(y) - (15/+*¢®) (g(2) log y + const.)

as vy becomes very large.

_———

(26)
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IV RESULTS AND CONCLUSION

In figure 2 we present curves of N(y) = - (df/dt)(ﬂrozp)-l

as a function of y =¢ /mec2 for a range of T from 5 ,OOOOK to
lO,OOOOK. The necessary computation was done on an IBM TO9k.
For values of 2y@ < 102 the asymptotic series 20 was used in-
cluding the seventh order term. For values of 20 > 10 2 ex-
pression 25 was evaluated.

It is immediately seen that the approximation - (@£/dt) <2
is very good for 4 < v < 4,000. Below L4 the dependence on p°
rather thané:z is manifest. Betveen about 10%® and 109 the curves
achieve the form of expression 26 namely proportional to log€
and T ¢, The values of M(y) for v - 1 can not be shown in figure
2 due to the logarith.ic scale, however, the zeroth and first order
terms of expression 20 give quite accurate values in the region
v ~ L.

It 1s of interest to compasre inverse Compton scattering
and synchrotron radiation as an energy loss mechanicsm for ccsmic
rey electrons. To this end we first note that for smell values
of v ® the inverse Compton scattering process is a classical radia-
tion process; in this limit the Klein-Nishina cross section is just
the Thompson scattering cross section.

For an electron in arbitrary electromegnetic field the instan-

taneous radiated power is given by]'5
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If we now assume that any energy flow is isotropic ( (B . (E x H))A =
nan ot v

and thet the fields are unpolarized ({(g X E 2) =2 s E3;

A-

({8 X H)®) = Z 8 H?). We now have
LV

(P)

av = 2 ®o? (E®/hm) + 3.555... moe ---* HE)(P

If we consider the situation that the only E fields present are
radiation fields the racdiation energy flux incident on the electron
is just -:. mo® (cEZ/hn) so that the loss of mechanical energy is

Just radiation out minus radiation in or

B2 4+ B2

--(df/dt)Av =3.555 ... mro" ( 8n /(mc>

where the energy demnsity includes radiation and static magnetic fields.

This is, of course identical to equation 21 and we see that the

relative importance of inverse Compton scattering compared to synchro-~

tron radiation depends only on the energy density of the radiation

field versus the energy density of the magnetic fieldsls. We see,

therefore, that in the galaxy where the energy density of both starlight

and magnetic fields is of the order of 1 ev/cc the twc procesees will be

on a roughly equal footing.

(27)

(28)

(29)
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APPENDIX

GENERATION OF AN ASYMPTOTIC EXPANSION BY REPEATED PARTIAL
INTEG. \TIONS

Consider the integral

© f(z) dz
XO exp(z/e)-1

vhere f(z) is analytic on the positive real line including zero
and it and all of its derivatives increase no faster than a poly-
®

nomial as z - ». We may expand [exp (z/.) -1] as‘E;é -nz/e which
series converges unii’'ormly in z for z > .0. Sincgzthe series does
not converge for z = o we mst also demand that £(z) go to zero

at least as fast as z for z - o. Since the integral now hus con-
tributions only in the region of uniform convergence we may inte-

grate term by term. Int-=grating a particular term by parts N

times we obtain

m+l

N
ff(z) e 02/e g, =§ (™ (o) (g.) + Ry
=0

o

where Ry = fw f(N+1{z)e -nz/e dz
JO (n/e)N+l

Due to the analyticity of f(z) on the positive real axis and the



limitation on its growth as z - o f (0F+1) (z) may be bounded by

1 o(N+1) q
i£ (z)| = Ay + Byz™ so that

N+2 N+24q

ol =i (gD + 3y 7 @D ()

If we now sum over n remembering that (o) = o we have

N
_ 1
I_Z S_+R'l
m=1

where § = g (m+1) f(m)(o) em+l

N+2 N+2+4q

and |R'y| <A; C(W2) ¢~ +By T (g+l) ¢ (N+2+q) e

17

This expansion, therefore, satisfies the definition™  of an

asymptotic expansion of I as ¢ - O.
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TABLE 1
Expansion Coefficients for f1 and f2

T

O 00 ~N O Ul LS W -

Po—
<o

n A N Bn
0.0 0.0 ]
0.0 0.0
0.0 0.13333320 x 10"

o

088888827 x 100 | -0. 28444412 x 10}
-0.271999992 x 100 | 0.69999923 x 10°
0.78400015 x 10" | -0.16784715 x 10°

-0.20520631 x10° | 0.39161810 x 10°
0. 51156461 x 10

0, 85469178 x 10°
0.12304761 x10° | 0. 20112988 x 10
028815807 x10° | -0. 44645477 x 10
066115232 x10° | 0.98096851 x 10
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Figure Captions

Figure 1. Argles involved in the scattering process viewed from the

electron center-of-mass system.

F gure 2. N(Y) versus y for values of @ corresponding to T = 5,COOOK,

7,067°%K, and 10,000%K.
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